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VJAM Mesh Texture: Learning continuous texture representation for
conditional and unconditional texture synthesis of 3D meshes

Vikas Thamizharasan Joshua Pierce Angelina Grosso Moyi Tian

Abstract

We endeavor to design an architecture that can learn
detailed textures across a latent space of images and
shapes, thus capable of probabilistically generating real-
istic, novel textures for previously unseen meshes. Taking
inspiration from the recent work TextureFields by Oech-
sle et al. [10] and others, we explore varying methods of
shape-representations, alternative loss metrics, and high-
frequency learning techniques. We demonstrate that ap-
plying Fourier feature transformations through a positional
encoding is an effective means for learning more detailed
textures.

1. Introduction

Generative models over the past few years have ex-
ploded in popularity and become a hallmark of research
problems within the vision community since the seminal
work of Goodfellow et al. [4] and Jürgen Schmidhuber
[13]. Deep learning models have become a cornerstone
of image-based tasks such as image-to-image translation.
However adapting these models to 3D data is not trivial
as naive implementations can grow in space and time com-
plexity. Unlike images which are regular, 3D data have nu-
merous representations, each with their pros and cons. For-
tunately over the past couple of years, there have been nu-
merous works designing learning-based techniques for 3D
geometry representations and that take into consideration

the trade-offs across fidelity, efficiency and generalizabil-
ity. Some of these works include PointNet[12], AtlasNet[5],
DeepSDF[11], Occupancy Net[8] and MeshCNN[7]. They
have shown promising results in various tasks such as single
image 3D reconstruction, surface reconstruction from par-
tial and noisy 3D data, interpolation, generative modeling
and learning high quality shape representation.

Learning texture representations has been a less explored
problem. Like in the case of geometry, how we represent
our input textures is not obvious. This is important, not just
for deciding what kind of data should be collected for train-
ing, but also informing the design of the architecture and the
representations learned by the neural network. If we attempt
to leverage the regular nature of voxels data, we run into is-
sues such as: the discretization of voxels presents inherent
limits in expressing high frequency, sharp details; further-
more, voxels are very memory inefficient, increasing by a
cubic factor. Some of the above problems can be resolved
by using techniques such as texture atlas, which provides
a mapping between 3D data and UV space (2D), or using
Geometry Images [6]. While these representations allevi-
ate some of the concerns of using voxels, they come with
substantial distortion associated with orientation as well as
discontinuities at boundaries. Furthermore, convolutions on
such maps would make learning canonical features difficult
due to having irregular and randomly distorted receptive
fields.

With this motivation, our Deep Learning Project builds
from a recent work called TextureFields by Oechsle et
al. [10]. TextureFields seeks to solve the aforemen-
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Figure 1. TextureFields’s Conditional Model. Source : [10]

tioned problems by using neural networks to approximate
a parameterized continuous function for representing tex-
ture information in 3D space. In this report, we first re-
view the framework proposed in TextureFields and sub-
sequently explore some ideas to improve certain aspects
of this paradigm. Ultimately, we seek to train a network
that produces more meaningful latent representations for
appearances and shapes, and accordingly generating more
realistic textures.

In our project, we attempt to incorporate:

• More state-of-the-art techniques for learning shape
representations (like DeepSDF, OccupancyNets,
PointNet++ [12]) by either replacing the TextureFields
shape encoder entirely, or by initializing the shape
encoder weights with a PointNet encoder pre-trained
on a geometry-specific task with stronger priors.

• Methods for approximating high-frequency data, such
as mapping inputs to Fourier features via a ’positional
encoding’ [15]. Ideally, this would afford Texture-
Fields a more detailed expression of textures from the
latent space.

• Alternative loss functions such as the earned Percep-
tual Image Patch Similarity [16]. The goal would be to
clarify blurry textures generated with L1 loss, which is
more sensitive to large perceptual changes

• Additional experiments with ShapeNet [2] and the 3D
Future dataset [3], with corresponding pre-processing
scripts.

2. Background
2.1. TextureFields

The authors define a function t parameterized by a neural
network tθ, with learnable parameters θ, which maps an in-
put 3D point p conditioned on shape embedding s ∈ S (cal-
culated from the input geometry) and latent variable z ∈ Z

(derived from either a conditioned image or sampled from a
learned distribution), to produce an output colour c:

tθ : R3 × S × Z −→ R3 (1)

As the idea of texturing a mesh is ill-posed, the authors
choose to condition TextureFields with a shape embedding
s: generated from a shape encoder that ideally captures con-
textual geometric information about the input shape; and
also a viewpoint invariant global-feature representation z:
encoded from an image that constraints this task by provid-
ing information about the mesh appearance.

TextureFields, built around a shape encoder and the ac-
tual texture fields architecture, implements a total of three
different models: a conditional model, a generative adver-
sarial network and a variational auto-encoder to capture am-
biguity in a random latent code z. In this work we focus on
the conditional model which is illustrated in figure [1]. This
model takes as input both a mesh (with points and surface
normals uniformly sampled) and a conditional 2D image,
and outputs a textured mesh modelled after the conditioned
image. The conditional model is composed of a shape en-
coder that generates the shape embedding, an image en-
coder that generates the latent variable and the TextureField
model itself.

2.2. Occupany Nets

Extracting shape-information is critical to the task of
TextureField. Occupany Networks implicitly represent the
3D surface of an object as the continuous decision boundary
of a deep neural network classifier. In later sections we use a
pretrained occupancy net to initialize the shape embedding
of texturefields.

2.3. PointNet++

Pointnet is another method for extracting shape infor-
mation: specifically, offering a permutation-invariant ap-
proach to analyzing point cloud data and thus allowing one
to directly extract geometric information with deep learning

2



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

CVPR
#

CVPR
#

Submission #. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Figure 2. Samples from the chair class of 3D FUTURE.

techniques. Pointnet++ offers notable improvements over
its predecessor by introducing a method for applying con-
volutions to the point cloud data. While Pointnet relied on
aggregating individual features of points, Pointnet++ also
incorporates the local structures, facilitating markedly bet-
ter shape representations.

2.4. Losses

TextureFields conditional model uses `1-loss between
the predicted and rendered images to train the model. Such
setting is commonly used in network training, but it cannot
efficiently capture the perceptual similarity in image fea-
tures. In recent years, a network-trained loss function, per-
ceptual losses, is proposed as a measure more-aligned with
human perceptual judgement by better capturing low-level
perceptual similarity across the latent features of images.
Studies have shown that perceptual losses excel in further
fine-tuning the learned features of a pre-trained network.

2.5. Positional Encoding

Recent research has made notable strides in en-
hancing neural networks’ ability to approximate high-
frequency data, such as Sitzmann’s Sinusoidal Rep-
resentation Networks[14] and Tancik’s Fourier Feature
Networks[15]. One notable application of the latter method
was NeRF’s[9] learning of photo-realistic, 3D scene rep-
resentations. With this as inspiration, we explore whether
these techniques could afford TextureFields a more granu-
lar, detailed expression of textures from its learned latent
space.

3. Methodology
3.1. Data

We use data from the ShapeNet dataset [2] and the 3D
FUTURE Dataset [3]. ShapeNet is a popular large scale 3D
repository covering various object classes. In this work, we
use the car category along with the textures. 3D FUTURE
was developed by professional designers and contains high
quality 3D instances of furniture with high resolution tex-
tures. This dataset contains both synthetic scenes and 3D

Figure 3. Samples from the car class of ShapeNet.

instances of furniture, but for our purposes we will only
be dealing with 3D instances of furniture, of which there
are 9,992 instances across a total of 34 different categories.
These 34 categories can be divided into broad categories,
such as “bed”, “cabinet” or “chair”. Looking at figure [2]
and [3], it can be seen that 3D FUTURE contains objects
with more complex topology and higher resolution textures
containing fine details.

TextureFields requires as input: uniformly sampled
points of the 3d mesh and the corresponding surface nor-
mals at each sampled point, N depth maps and albedo im-
ages rendered from various camera angles along the view-
ing hemisphere, the camera intrinsic and camera extrinsic
for each of the N camera poses in order to unproject the
depth pixel to a 3d point, and optionally a set of conditional
images of objects similar to the input mesh. TextureFields
provides us with the pre-processed data for ShapeNet, but
not the corresponding script that accomplishes this. We thus
write our own script to be able to generate data for 3D FU-
TURE that adheres to the requirments of TextureFields.

3.2. Adjusting the Shape Encoding Architecture

As 2D image encoders are a well-studied field, we at-
tempted to improve the performance of the conditional
model by modifying the shape encoder.

Figure 4. Shape encoder used by TextureFields, Source : [10]

We hypothesized that the shape embedding outputted by
the shape encoder should ideally contain pertinent topolog-
ical information about the mesh, such as local connectiv-
ity, symmetry, and part decomposition. We conjecture that
having a latent vector which is more topologically aware
would benefit the overall output of the model. The shape
encoder originally implemented by the authors was inspired
by Pointnet and uses ResNet blocks; it takes point clouds as
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Figure 5. An example of incorrect texture prediction. While the
example of the input car looks correct, the second example of the
pickup truck has an instance of incorrect texture inferred from the
conditioned image. Ideally, the shape embedding coupled with
the encoded image representation should inform TextureFields of
semantic-level information such as windows, chassis, trunk etc.
But here we see texture for the trunk being drawn from the win-
dows as opposed to the trunk visible in the conditioned image.

Figure 6. Occupany net trained on surface reconstruction.

inputs and outputs a 512 dimensional vector. This PointNet
encoder was trained from scratch within the pipeline shown
in figure [1], where all the losses are only computed on
the output of the TextureFields model. This leads to some
uncertainty as to what degree the shape encoder encodes
meaningful information as described above into the low di-
mensional shape embedding. Some of the results shown in
figure [5], makes us believe there is room for improvement.

We propose some of the following changes:

• Initialize the PointNet encoder with pre-trained
weights. The idea behind this is to use weights from a
model that was learned for a 3D-geometry task such as
reconstructing surfaces from pointclouds. With such a
task, the network is able to better utilize priors and is
penalized for not capturing pertinent topological infor-
mation.

This goal is never fully-realized in TextureFields and
thus motivates us to employ pre-trained weights, and
then subsequently fine tune the PointNet encoder
within TextureFields, thus giving the network a head
start and hopefully helping it converge to an optimal
minima.

• We replaced this shape encoder by a Pointnet++ en-
coder.

Figure 7.

Training and Evaluation

Ideally, the changes we made to the TextureFields archi-
tecture would be evaluated by training the model multiple
times on a large dataset. One training run would use the
original TextureFields architecture, while the other training
runs would incorporate our various modifications. This ex-
perimental setup would allow for results that could clearly
evaluate the impact of our modifications on performance.
After reaching out to the authors of TextureFields, we
learned that training their model on the ShapeNet car dataset
took approximately one week. As this was an infeasible task
for our project timeline, we modified our original training
and evaluation plan.

Instead of training on a large dataset, we decided to over-
fit on single examples. Using a single example as the input
into the model, we trained the model until the loss value ap-
peared to converge and the output did not appear to change
between epochs. We then used a mixture of qualitative and
quantitative criteria to evaluate the performances of the dif-
ferent architecture. We essentially test the representation
power of the network.

Similarly, to compare the performances of the standard
`1-loss and the perceptual losses, we perform the represen-
tation power experiments on both `1-loss and perceptual
loss [16]. Specifically, the perceptual loss function we use
is based on the VGG network, initialized from a pre-trained
classification model.

3.3. Positional Encoding

Recent research has proposed effective techniques for
enabling neural networks to approximate high-frequency
data, such as SIREN[14] and Fourier feature mapping[15].
The latter uses a positional encoding technique: specifi-
cally, mapping the inputs of a neural network to higher-
dimensional Fourier features. This technique has presented
demonstrable improvements in learning high-frequency in-
puts such as in the case of NeRF’s photorealistic, three-
dimensional scenes[9]. Given the conceptual similarity be-
tween TextureFields and NeRF’s learned mapping of colors
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in a 3D space, we chose to implement NeRF’s positional
encoding method. Furthermore, this approach is limited to
mapping the input coordinates to higher dimensions, thus
allowing us to avoid substantially modifying the Texture-
Fields architecture.

Recall that TextureFields takes as input a shape-vector,
image-vector, and a 3D coordinate on the provided mesh,
and outputs a corresponding color. Following the imple-
mentation in NeRF, our positional encoding technique maps
each dimension of the 3D coordinate into higher dimen-
sional space with a Fourier features transformation.

γ(v) = (a0sin(πb
T
0 v), a0cos(πb

T
0 v),

a1sin(πb
T
1 v), a1cos(πb

T
1 v), ...,

aLsin(πb
T
Lv), aLcos(πb

T
Lv))

(2)

Note that each input coordinate is mapped to multiple
pairs of sin and cos transformations- the number of such
pairs is represented by L in the above equation. Therefore,
the resulting transformation maps the 3D input coordinates
to 3 ∗ L ∗ 2 dimensions. L is a hyperparameter, and from
the applications outlined in NeRF[9] and Fourier Features
Networks[?] we chose L = 8, thus mapping TextureFields’
3D input to a 48D vector.

Training and Evaluating

As noted above, fully training an updated TextureFields
model requires a prohibitive amount of training time. Fur-
thermore, in this case it’s not sufficient to overfit to a single
texture because we want to evaluate both the positional en-
coding’s effect on learning detailed textures from the train-
ing set as well as the impact on synthesizing novel textures
from new shape- and image-vectors. In balancing these
goals we chose to train a TextureFields model modified with
a positional encoding for 30k epochs on five car models.
For comparison, we also trained the original TextureFields
model for 29.5k epochs on the same five cars. This re-
quired 10.5 hrs and 7.5 hrs of training on a single NVIDIA
Tesla V100 GPU for the normal and positional encoding
models, respectively. Comparison of the two models con-
sists of a qualitative assessment of their generated images
as well as an evaluation of image similarity metrics calcu-
lated from predicted views and their corresponding ground
truths. Similar to TextureFields, we use the structure sim-
ilarity image metric (SSIM) as a measure of local image-
properties and their Feature-`1-metric as a more global per-
ceptual measure. Generated images and corresponding im-
age similarity metrics are calculated at every 500 epochs.

4. Results
4.1. Shape Encoders

In order to evaluate the performance of our modifications
to the shape encoder architecture, we overfit the model on
a single example from the shape net dataset. We ran the
model a total of three time: once as a baseline, once with
Pointnet++ used as the shape encoder, and once with the
original shape encoder pre-trained with weights from Oc-
cupancy Network. Quantitatively, we observe the same two
model evaluation metrics use by Texture Fields: structure
similarity image metric (SSIM) and feature `l-metric.

Figure 8. Ground-truth images for the training

Figure 9. Baseline predicted images

Figure 10. Pointnet++ predicted images

Figure 11. Pretrained Weights predicted images

For the baseline, we used the original architecture pro-
vided by Texture Fields and ran for a total of approximately
70,000 epochs. Qualitatively, the final result is very close
to the ground truth which is to be expected when overfitting
to a single model. Some small details remain unlearned,
such as the ground truth fact that the seats can be observed
through the rear window of the car.

We then ran the model again, this time for approximately
85,000 epochs, with Pointnet++ as the shape encoder. We
saw that qualitatively, the final result was further from the
ground truth than the baseline. Many details remained
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blurred or smudged, particularly on the roof of the car. As
we ran this model for more epochs we received worse re-
sults and concluded that changing the architecture to Point-
net++ hurt the performance of the model.

The third model used the original architecture provided
by TextureFields with the shape encoder initialized with
pre-trained weights from the Occupancy Network. We orig-
inally tried to initialize all weights with pre-trained weights.
This yielded a strange output of monochrome texture. At
first we believed there was a bug within the code we used to
load the pre-trained weights. Extensive debugging showed
that when different combinations of weights were initial-
ized, some would stay frozen at certain values while others
would change throughout training. We came to the con-
clusion that there was nothing wrong with our implemen-
tation. Our theory for this strange behavior is that the pre-
trained weights from Occupany Network cause the condi-
tional model to remain stuck in a very non-optimal minima.

To avoid getting stuck in such a minima, we decided
to only initialize some of the weights within the geome-
try encoder. Specifically, all the weights within the first 2
ResNet blocks. Qualitatively, the results were very similar
to those from the baseline. The hypothesis here is that, the
first few layers learn features that are common between the
two tasks: texture synthesis and surface reconstruction.

Comparing the quantitative metrics, there is no signifi-
cant difference between the (SSIM) and (FID) of the three
runs.

Altogether, these results led us to tentatively conclude
that changing the geometry encoder to Pointnet++ harmed
the model’s performance while initializing some weights
within the geometry encoder had no effect.

4.2. `1-loss vs. Perceptual Loss

We trained on one car model from ShapeNet dataset once
with `1-loss proposed by TextureFields and once with per-
ceptual loss function. Each of the trainings ran over ap-
proximately 29k epochs. Figure [25] shows the real images
from the actual car model. Figure [13] shows the predicted
images with respect to `1-loss and Figure [14] shows the
predicted images with respect to the perceptual loss.

Figure 12. Ground-truth images for the training

From the generated fake images, we can qualitatively
conclude that the TextureFields network is unlikely to im-
prove performance by implementing the perceptual loss.
Specifically, we observe that some types of patterns in ap-
pearance, the white stripes on the hood for example, can

Figure 13. Predicted images after training 29k epochs with `1-loss

Figure 14. Predicted images after training 29k epochs with percep-
tual loss

no longer be effectively captured after taking the perceptual
judgement part into the network. We also found that the pre-
dicted color tends to be brighter in the perceptual network.
One thing to notice is that the tail lights of the car, which
have long thin horizontal shapes, are better depicted in the
perceptual case than the `1-loss case. We conjecture that
the perceptual loss is better at learning textures with pat-
terns that are thin and long horizontally than the ones that
are more like vertical strips.

Quantitatively, we can look at the graphs of average loss
per epoch over training as depicted by Figure [15] and com-
pare the behaviors of the two networks. We observe that
perceptual losses result in larger variations and also are
higher than the `1-loss on average. Hence, we can also con-
clude from the data that `1-loss has better performance than
the perceptual losses in the task of learning appearance.

In general, the behavior of the network implemented
with the perceptual loss function does not match our predic-
tion that the network will be able to learn the texture infor-
mation better if we simply improve perceptual similarities
by capturing deep features on the image level. Since the net-
work with perceptual losses takes approximately double the
time as the `1-loss to train for the same number of epochs,
in practice applying perceptual losses for capturing 3D tex-
ture is not a practical choice. However, the differences in
effectively captured features suggests a new potential direc-
tion to investigate. It is worth studying which features are
more advantageously learned by these networks, and how
they may correspond with specific loss functions. This may
provide a strong basis for strategically combining multiple
losses to improve performance.

4.3. Positional Encoding

When qualitatively comparing the abilities of both mod-
els’ to learn detailed representations of textures in the train-
ing set, the TextureFields model with the positional encod-
ing transformation (PE learned more granular textures as
compared to the original TextureFields model (ORIG). Al-
though the models improved their texture representations
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Figure 15. Average loss per epoch (collected from the initial part
of the training). Perceptual loss is in red and `1-loss is in orange

over the course of training, both models occasionally gen-
erate abruptly distorted textures for one or more car models
before adjusting in the subsequent epochs. (For examples
see figure 24 in the appendix: epochs 24.5k and 29.5k for
PE and ORIG, respectively.) The last epoch for ORIG gen-
erated substantially distorted textures for three of the car
models. To avoid exaggerating the degree of PE’s improved
accuracy relative to ORIG, in figure 16 we compare the tex-
tures generated from PE’s last epoch with the qualitatively
’best’ images selected from across ORIG’s training history.
Even with these ORIG-favorable terms, PE generates com-
paratively more detailed textures. For further context, figure
22 in the appendix compares the generated textures from the
last epoch of both models for all five cars in the training set.

Additionally figures 23-25 in the appendix show the pro-
gression of generated images at an interval of 2.5k epochs.
(These generated images are the ones from which ORIG’s
’best’ results were selected in figure 16.) Figures 23-25 also
highlight a distinction between the learning processes of
ORIG and PE. In broad terms, details appeared to be learned
more rapidly for the PE model. Specifically, note that even
the initial texture representations of PE include some vari-
ability in allocating color, while initial ORIG representa-
tions are largely monochrome, reflecting the most prevalent
color of each car. This comports with the functional pur-
pose of positional encoding- ie, PE more readily learns to
allocate high-frequency changes in color-values across rel-
atively short distances.

The comparative speed with which PE approximates tex-
tures in the training set is evident when evaluating the train-
ing loss. See figure 17. The PE model also shows bet-
ter SSIM and Feature-`1-metric values over the course of
the 500-epoch reporting intervals, indicating higher-fidelity

Figure 16. Comparison of textures generated from three of the
five cars in the training set. The model with positional encod-
ing (+PE) learned more detailed representations of the training
textures. For example, note the red border around the roof of the
bottom car; and on extremely close inspection, the white stripe on
the hood can be seen to be segmented into three sections similar to
the ground truth (GT). This model was trained for 29.5k epochs.
The normal TextureFields model (TF) happened to generate sub-
stantially distorted textures for the red and yellow cars on the final
29.5k epoch. (This is a normal periodic occurrence for both mod-
els over the course of training- for reference the generated textures
across training is visible in figures 23-25 in the appendix.) So as
to not over-emphasize the difference between the two models, the
above figure selects the best texture over the course of training for
the TextureFields model, with the corresponding epoch indicated
in red text. (Unless otherwise indicated, the 29.5k epoch is used
in the above figure.) A comparison of generated textures from the
29.5k epoch for both models is visible in figure 22 of the appendix

representations of the training textures. See figures 18 and
19.
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Figure 17. Training loss over the course of 29.5k epochs. The
blue line represents the normal TextureFields model (ORIG) while
orange indicates the model with positional encoding (PE). Note
the steeper initial drop in loss for the PE model, as well as the
diminished variation across epochs. The steeper slope in the loss
curve comports with the comparatively earlier appearance of tex-
ture details during PE’s training (see figures 23-25 in the ap-
pendix)

Figure 18. Structure similarity image metric (SSIM) calcu-
lated at 500-epoch intervals over the course of 29.5k epochs.
The blue line represents the normal TextureFields model (ORIG)
while orange indicates the model with positional encoding (PE).
Higher values indicate more image similarity between between the
model’s predicted images and the ground truth for cars in the train-
ing set. As compared to the metric reported in figure 19, SSIM is
a measure of local image-properties.

While PE performs better at learning textures from the
training set, that does not necessarily equate to improved
performance when synthesizing novel textures. Figures 20
and 21 show two examples where PE and ORIG generate
novel textures after being given a new mesh and correspond-
ing shape and image-vectors as inputs. Given the limited
training data and training time this analysis is only useful
for the sake of comparison between the two models; in other
words, we wouldn’t expect either to perform well with this
task. In the first example, ORIG does a notably better job

Figure 19. Feature-`1-metric calculated at 500-epoch intervals
over the course of 29.5k epochs. The blue line represents the
normal TextureFields model (ORIG) while orange indicates the
model with positional encoding (PE). This is a metric that was
introduced by TextureFields, where higher values indicate less im-
age similarity between between the model’s predicted images and
ground truth for cars in the training set. This metric was designed
to capture more global features of image similarity.

of incorporating the image-vector into the texture, however
ORIG completely misses the mark with the second exam-
ple. While PE displays more texture-variance with its mot-
tled allocation of colors, this does not clearly correspond to
generating more realistic textures.

Figure 20. Comparison of novel textures generated after train-
ing for 29.5k epochs on five car models. The models are given
as input the shape- and image-encodings from a previously unseen
car, and then predict a corresponding texture. The image-encoding
is calculated from a single view of the car, which is displayed at the
top of the figure. As expected, neither model did particularly well
at this task due to limited training; however, ORIG better approxi-
mated the color of the target texture, seeming to appropriately lift
the coloring-scheme of the yellow-car from the training set. On
extremely close inspection, it’s apparent both models made slight
attempts at the lettering on the windshield of the truck, with the
PE model’s version slightly more pronounced.
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Figure 21. Comparison of novel textures generated after train-
ing for 29.5k epochs on five car models. In this instance ORIG
entirely missed the mark of the target coloring scheme. However,
PE is not much better, though arguably closer to the slightly darker
shade of green in the input-image. Similar to the previous figure,
PE’s textures display higher-frequency variation in color, while
ORIG’s textures are consistently more smooth. This fits with the
design of the positional encoding, however at least in these ex-
amples this does not result in discernibly more realistic textures.
Altogether, these two results fail to suggest that the improved gran-
ularity of the positional encoding in learning the training set will
naturally translate to improved synthesis of novel textures.

5. Discussion
5.1. Shape Encoding

With regards to the shape encoder modifications, we had
hoped to see loss converging faster and to a smaller value
than the overfitting performance yielded by the baseline.
Quantitatively we see this is not the case; the differences
in loss convergence and metrics is not significant. Quali-
tatively we see that pretrained weights make no difference
and that Pointnet++ seems to yield inferior results. We will
need to put more thought into what sort of geometric details
are captured by the shape embedding.

5.2. `1-loss vs. Perceptual Loss

With regards to changing the loss, quantitative results
in different metrics yielded no significant differences when
compared to the baseline, but the variances and loss values
are in general higher than the original network. Through
qualitative observations, we note that perceptual losses can
capture some minor horizontal texture features slightly bet-
ter. In contrast to our expectation, the experiment indicates
that capturing deep features or perceptual similarities at im-
age level does not contribute to learning essential texture
information in 3D. One future direction is to investigate
which features are better learned by which networks/loss
functions, and how we can combine these advantages to
achieve better performance.

5.3. Positional Encoding

In our experiment, the positional encoding transforma-
tion corresponded with a clear improvement in Texture-
Field’s ability to learn detailed textures from the training
set. However, this did not result in a corresponding im-
provement in performance when synthesizing novel tex-
tures. Altogether, there are a couple of caveats to keep in
mind with this experiment:

• The limitations in data and training prohibit us from
conclusively evaluating the impact of the positional en-
coding on synthesizing novel textures. For example,
it’s conceivable that the improved performance of PE
in learning textures in the training set may come at the
cost of generalizing to new textures. In other words,
it’s possible the positional encoding as it’s currently
structured may present the inherent trade-off of over-
fitting: learning high-frequency details in the training
set versus generalizing to novel textures. On the other
hand, the failure in both these examples could very rea-
sonably be the result of the minuscule training data.

• Given the limitations in training time, we cannot speak
conclusively about the relative potential of these mod-
els in less-restrictive scenarios. For example, it’s quite
possible that ORIG would always eventually learn a
similar level of granular textures as the positional en-
coding model given enough training time.

• The larger input vector of PE (48 dimensions instead
of three) inherently provides considerably more train-
able parameters in the first fully connected layer of
TextureFields. It’s conceivable that some amount of
improved performance with regards to learning train-
ing textures is the result of simply having more train-
able parameters. In subsequent studies this could be
controlled for by increasing the size of ORIG’s initial,
fully-connected layer.

None-the-less, the clear improvement in the positional
encoding’s ability to learn detailed textures suggests that
this is a worthy avenue of further research. Future studies
could include:

• Expanding training time. This will help investigate
whether or not the original model is in fact capable
of learning the same level of detail, albeit at a slower
pace.

• Expanding the training data. This can help inform
whether the positional encoding’s approximation of
high-frequency details could be applied to the task of
novel texture synthesis after learning a more compre-
hensive latent space.
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• Exploring other techniques for learning high-
frequency data. NeRF’s positional encoding was
partly selected for its simplicity in assimilating with
TextureFields. Subsequent research with SIREN[14]
and Fourier transformations[15] have demonstrated
improved efficacy in learning high-frequency data. For
example, recent research by Chan et al. [1] has applied
neural radiance fields in the context of a generative
adversarial network while incorporating the SIREN
method for approximating high-frequency data. This
research may provide relevant insight for how to better
incorporate high-frequency techniques into Texture-
Fields as it bridges the conceptual similarity of neural
radiance fields’ implicit 3D scene-representation with
TextureFields’ operation over a latent space. An
interesting avenue of research would be studying the
varying benefits and drawbacks of these methods for
learning and synthesizing detailed textures.

• Expanding the size and impact of the latent space for
the shape and image encodings. One can imagine that
the improved expressiveness of these high-frequency
learning techniques should correspond with a richer
latent space to draw from. Incorporating these tech-
niques into the generation of the shape and image en-
codings may thus be a worthwhile endeavor.

6. Challenges

We encountered the biggest challenges of this project
when we learned from the authors of TextureFields that
training on the shapenet cars data took approximately a
week. Our original plan was to train on the Shapenet cars
for comparison, and then train on the 3DFuture data. Re-
alizing that this plan was infeasible due to time constraints,
we had to develop an entirely new training and evaluation
plan. Unfortunately this led to us not using the 3D Future
data, meaning the time we spent preprocessing the data be-
came a sunk cost.

Another challenge came when we attempted to imple-
ment DeepSDF as the shape encoder within the Texture-
Fields architecture. DeepSDF, where a neural networks ap-
proximates the signed distance field, belongs to the same
class of implicit representation networks as Occupany Net.
Although DeepSDF takes a point cloud as input, it requires
an essential preprocessing before passing the input into the
model. After spending a substantial amount of time at-
tempting to get the DeepSDF preprocessing code opera-
tional, we decided that our efforts would be better focused
elsewhere. Another bottleneck was that DeepSDF uses an
auto-decoder model as opposed to auto-encoder. This made
it less clear how best to integrate it with TextureFields.

7. Reflection

A limitation of our experimental process is that over-
fitting on a single example in not the ideal way to evalu-
ate model performance. A better task would be to train on
the entire dataset and evaluate generalization. Additionally,
we also seek to incorporate an architecture like MeshCNN
that can operate directly on meshes as opposed to requiring
point cloud sampling with the rendering and unprojection
pipeline.

Although we were not able to train on the entire dataset
as initially hoped, we did manage to implement different
shape encoders, perceptual losses and a positional encod-
ing. Even within these limitations, the positional encoding
implementation offered promising improvements over the
base model. Although are other various experiments did
not yield results better than the existing works, some exper-
iments produced results with similar quality and most im-
portantly, we saw pros and cons for different methods and
processed the reasoning about why certain issues would oc-
cur. We accomplished the base and target goals that we
modified the architecture, tried applying more state-of-the-
art techniques and observed the qualitative and quantitative
results.

This is a novel and challenging problem and thus despite
not achieving the ultimate goal, we still learned some valu-
able lessons both on the engineering and research aspect and
got an opportunity to ask important questions in the field of
3D deep learning.
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8. APPENDIX: Supplementary Material
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Figure 22. Comparison of textures generated by ORIG and PE for all five cars in the training set after 29.5k epochs of training.
Note that ORIG happened to generate substantially distorted textures for the red, yellow and green cars on the final 29.5k epoch. This is a
normal periodic occurrence for both models over the initial course of training- see the textures generated across training in figures 23-25.
One example of the detail PE is able to represent is evident in the license plate captured on the green sedan.
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Figure 23. Comparison of textures generated by ORIG and PE for a car in the training set at 2.5k epoch intervals across the course
29.5k epochs of training. The bottom row are the ground truth images. Note the early approximation of details for the PE model.
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Figure 24. Comparison of textures generated by ORIG and PE for a car in the training set at 2.5k epoch intervals across the course
29.5k epochs of training. The bottom row are the ground truth images. Note the early approximation of details for the PE model. There
are abrupt distortions in the generated textures for both ORIG and PE at epochs 29.5k and 24.5k, respectively
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Figure 25. Comparison of textures generated by ORIG and PE for a car in the training set at 2.5k epoch intervals across the course
29.5k epochs of training. The bottom row are the ground truth images. Note the early approximation of details for the PE model.
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