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Knot 

 

1. The Knot Problem 

   We will focus on the simplest case of classification of embeddings in the elementary 

form here. It involves embedding of the 1-sphere S1 (circle) into the 3 dimensional 

Euclidean space R3. 

  To work in the domain of more complicated spaces, we can make R3 into the compact 

space 3-sphere S3 and obtain an equivalent problem. In order to proceed in the 

approach, we set this problem on tame embeddings, which are simplicial and result in 

more appropriate trangulations of S3 and S1. Thus, we exclude wild embeddings, which 

are knotted endlessly in a certain manner, although there are also interesting examples 

in such cases. It should be mentioned that, according to the Jordan-Schönflies theorem, 

every two embeddings from S1 into S2 are topologically equivalent in this relation. On 

the other hand, there are wild embeddings from S2 into S3 (Antoine 1921, Alexander 

1924), while every two tame (embeddings) are even combinatorially equivalent 

(Alexander 1924, Graeub 1950). 

  It has been proved appropriate to consider orientations. Therefore, we considered 

tame embeddings of the orientations on S1 into the orientations on S3. 

  Different ways are provided for the classification, for example 

1. topological transformations of S3, 

2. strong isotopes, 

3. piecewise linear (semilinear) topological transformations of S3, 
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4. elementary combinatorial equivalence according to Reidemeister (Knot Theory 

1932). 

  The transformations under 1 and 3 should maintain the orientations of the S3. Strong 

isotopies are deformations of identity maps of S3. Weak isotopies are deformations of 

embeddings. Every two embeddings with weak isotopies are equivalent. 

  The different ways of classification above are equivalent in the case we are 

considering. The equivalence of 1 and 2 results from that every topologically orientation-

preserving self-map of the S3 is isotopic to the identity (G.M. Fisher 1960). Graeub 

showed the equivalence of 3 and 4 in 1950, by which we can further attain the transition 

of elementary deformations to a transformation group. The equivalence of 1 and 3 is 

based on the fact that 3 dimensional manifolds are triangulable and that the so-called 

Hauptvermutung for them is valid, so then every two triangulations of the same manifold 

have isomorphic partitions (Moise 1952, 1954, Bing 1959). In addition, another 

classification is clear: one can consider differentiable embeddings and define 

equivalence with respect to diffeomorphisms of the S3. Also, this is proved to be 

equivalent with the ones that are previously mentioned. 

  It is remarkable that this equivalence does not exist if we consider generic embeddings 

from Sr into Sn. Here in addition, we require that the tame embeddings are locally flat, 

which means that every point on the embedded Sr has a neighborhood in Sr. The 

neighborhood can be made through a topological or piecewise linear self-map of the Sn. 

This comes automatically with the case of differentiable embeddings. However, there 

are combinatorial embeddings from S2 into S4 that are not locally flat. We can obtain the 

simplest case from a knotted S1 in R3⊂R4 through an image of a double-cone 
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(suspension) in R4. The difference between the combinatorial case and the differential 

case is even deeper. According to Zeeman (1960), for 𝑛 − 𝑟 ≥ 3, every two 

combinatorial embeddings from Sr into Sn are equivalent with respect to piecewise 

linear maps. However, Haefliger showed in 1962 that the (4k-1)-sphere can be 

embedded (with standard differential structure of the spheres) into the 6k-sphere 

differentiably knottedly (thus it is not equivalent to a large sphere). The classes of 

differentiable knots form a group in combinatorially trivial domain 𝑛 − 𝑟 ≥ 3(Haefliger 

1962, Levine 1965). Although the hereby mentioned list of questions here attracted 

vigorous interest, led to numerous important results in recent years and provided 

interesting open problems, we want to limit ourselves here again to the initial case. 

 

2. Direct Geometric Approach 

  We henceforth consider with the piecewise linear perspective, which indicates no loss 

of generality according to the statements above. Thus, a knot is now a class of 

equivalent and oriented simple closed polygons in the oriented S3, whereby a 

triangulation of the S3 is taken as a basis together with its linear subdivisions. The class 

represented by the boundary of a triangle is called circle. All the others are truly knotted. 

  The simplest way to represent a knot is by a regular planar projection (in R3). This 

means it only contains simple double points. Fig. 1 up to Fig. 4 show some examples. 

Fig. 1 represents the circle, Fig. 2 and 3 represent a right and a left-handed trefoil 

respectively, and Fig. 4 represents the four-knot. The genus has been proven to be a 

particularly important invariant (Seifert 1934). Each knot curve borders orientable 
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(simply punctured) surfaces. The smallest genus of such surfaces is the genus of the 

knot. The circle is characterized by genus 0. 

  With the effort to classify knots, people found it interesting to investigate the methods 

to reduce knots to “simpler” ones, or conversely, to make new and “more complicated” 

ones from given knots. The oldest such method is the product of knots, which can be 

explained in the simplest way as such: we consider two knot curves in R3 that are 

located on different sides of a face, slide them together so that they coincide with 

different orientations in a line segment, and then remove the line segment (Fig. 5). This 

product is associative and commutative, and the circle is the identity. In the process, 

there exists a unique prime factorization (Schubert 1949). 

  Another method is the formation of hose knots (also called parallel knots). We thicken 

a knot curve k to a full ring and consider a knot curve on its boundary, which at least 

circulates twice. k is the support of the hose knot created in this way. Fig. 2, 3, 6 are 

examples with the circle as support. Hose knots can be classified by support and two 

numerical invariants (winding and linking number) (Schubert 1953). 

  Furthermore, one method is the formation of noose. We twine and twist a ribbon and 

hang the ends onto each other, as the upper portion of Fig. 4 shows. The boundary of 

the ribbon then forms a noose. Such knots can be classified by the transverse knot, 

which results from the middle line of the ribbon, and by two numerical invariants (Seifert 

1949). 

  The methods mentioned (so far) led to the concept of the companion knots. Given a 

knot represented by a knot curve k, a companion knot (assuming one exists) is a purely 
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knotted full ring V that contains k inside where k is neither a core (graphic middle line) 

nor a (topological) entire sphere in V. 

  These observations took a definitive turn due to Haken, who stated a finite procedure 

(published in 1961) to define the genus of a knot. What is remarkable about this is that it 

can be decided whether a presented knot is a circle. Finite (even if functionally 

infeasible due to its length) procedures for prime factorization of knots (Schubert 1961), 

for realizing and determining the invariant of the hose knot (Haken, unpublished so far) 

and of nooses with the exception of the four-knot (Soltsien 1965) and for identifying all 

companion knots (Hammer 1963) arise from this method. It can be proved that knots 

with companion knots giving clampable orientable surfaces of minimal genus are 

divided into finite many isotopy classes (Schubert and Soltsien 1964). 

  Haken’s method also provides a decomposition of compact 3 dimensional manifolds 

into irreducible components (Haken 1961). This opens up perspectives to make the 

equivalence problem for knots decidable through decomposition of the exterior spaces.  

 

3. Knot and Exterior Space 

  To be able to consider the exterior space of a knot as a compact manifold (with 

boundary), let a regular open neighborhood of a knot curve be removed from the S3. 

The knot itself is then described as a curve circulating once on the boundary of a torus, 

which is homologous to zero in the exterior space (parallel of latitude or longitude). In 

addition, a conjugate loop-cut on the boundary of a torus is homologous to zero on the 

removed full ring (meridian). 
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  Two fundamental results by Papakyriakopoulos should be mentioned here beforehand: 

the sphere theorem and the proof of Dehn’s lemma (1957), which was subsequently 

generalized to the loop theorem (Shapiro and J.H.C. Whitehead 1958, Stallings 1960). 

The sphere theorem says: If the second homotopy group of a triangulated 3-manifold is 

not trivial, then there is no null-homotopic simplicial 2-sphere in it. The loop theorem 

states: If a curve u lies on the boundary Ṁ of a 3-manifold M, which is null-homotopic in 

M but not in Ṁ, then there is a simple and closed curve v of u on Ṁ in an arbitrarily small 

neighborhood, which is not null-homotopic on Ṁ and borders a simplicial 2-cell (“disk”, 

elementary surface) in M. Both theorems can be refined. 

  It follows from the sphere theorem that the second homotopy group of the exterior 

space of a knot vanishes. We can recognize that the higher homotopy groups will also 

vanish if we apply Hurewicz isomorphism theorem on the universal superposition of a 2-

dimensional deformation retract. So, only the fundamental group remains, which is 

called the knot group here in most cases. Generators and relations from the projection 

of a knot can be indicated for this group. 

  The first homology group does not contribute to the differentiation of exterior spaces of 

knots at the beginning. It is always cyclical freely. However, it allows us to consider 

cyclic superpositions and their homologies simultaneously for all exterior spaces of 

knots, by which we obtain invariants, which are simple to calculate (in particular Seifert 

1934, Threlfall 1949). The first homology group of the infinite cyclic superposition can 

therefore be understood as a module over the ring group of the deck transformation 

group. We obtain the corresponding information of this module from generators and 

relations of the knot group. Then, we can order generated ideals (fitting ideals) of the 
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coefficient rings for it (Alexander 1928, Fox 1953, 1954, Crowell 1960, 1961, 1963, 

Gamst 1967). However, all named homologous invariants are very weak. Seifert 

showed in 1950 that in each case, infinitely many knots can match in these invariants. 

  We now turn to questions about what stems from the orientations of S3 and S1. The 

homology groups of the finite-pedal cyclic superpositions of the exterior space of knots 

are groups with convolution (Seifert 1935). By associated invariants, it can be shown in 

special cases that a knot is different from its mirror reflection. Therefore, the formerly 

used classes of quadratic forms and their Minkowski invariants are defined by the 

convolution invariants of the two-pedal superpositions (Kneser and Puppe 1953). All 

torus knots (hose knots whose support is a circle) are different from their mirror 

reflections. This could be shown by looking at the automorphism groups of the 

associated knot groups (Dehn 1914, Schreier 1924). Therefore, Fig. 2 and 3 represent 

different knots. All torus knots and nooses go over into themselves if they are 

reoriented. In 1964, Trotter finally successfully proved that certain knots with 

reorientation do not pass over themselves by showing a class of such knots. The 

strategy used in the process was the peripheral structure of the knot group, which was 

introduced by Fox in 1952. It involves a class of conjugate subgroups with perfect 

generators, which arise from parallels of latitude and meridian. With these ideas, many 

knots can also be distinguished by their mirror reflections or reoriented mirror 

reflections, and exterior spaces of knots with isomorphic fundamental groups can be 

recognized as not homeomorphic (Fox 1952).  

  We just said that the fundamental group does not determine the type of 

homeomorphism of the exterior space of knots in general. However, this is true with the 
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circle, which follows from Dehn's lemma. Dehn had formulated the lemma for it in 1910. 

This is also true for torus knots. These are yet the only knots whose group has a center. 

This conjecture by Neuwirth was proved simultaneously for multiple times in 1965 

(Burde and Zieschang, Waldhausen, Noga). The conjecture that is unproved so far 

comes from Fox. It states that group and peripheral subgroups characterize the exterior 

space. 

  Here, the question concludes by whether or not the oriented exterior space determines 

the knot except for its orientation. This is assumed to be true. However, it is only known 

for the circle, for the torus knots and recently for the product knots (Noga 1967) so far. 

An analogous statement for links (embeddings of a disjoint sum of 1-spheres) is false 

(J.H.C. Whitehead 1937). 

  The commutator group of the knot group, by Neuwirth in particular, attracted interest in 

recent years (reported in Ann. Math. Studies 56, Princeton 1965). By the loop theorem, 

we can yield that if it is free, then it is precisely finitely generated. This is equivalent to 

the fact that the exterior space of a knot has a Stallings’ fiberation (Stallings 1961). 

Here, the fiber is an orientable surface with minimal genus, which is bordered by the 

knot, and the basis is a circular line. The four-knot and all torus knots are (such) 

examples. With this, the characterization of the groups and the exterior spaces of torus 

knots mentioned above could be attained. Then, it follows that Stallings’ fiberation leads 

to Seifert fibration with exceptional fibers (Seifert 1933). By Haken's methods, we can 

determine whether or not a given knot is a Neuwirth knot, which is to say that its group 

has a free commutator group. 
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  By the end, it should be mentioned explicitly that no comprehensiveness could be 

achieved by one report in this setting. The selection of work is limited to personal 

preferences. We further refer to: Crowell, R.H. and Fox, R.H.: Introduction to Knot 

Theory, Boston, 1963, and the given Guide to the Literature there. 


